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Abstract

A numerical algorithm is developed with the capability

of capturing shocks in the internal blade passages of a

modern gas turbine. The algorithm uses MacCormack's

explicit finite difference scheme to solve the two-

dimensional form of the Euler equations. Inlet and exit

boundary conditions are developed that allow disturbances to

propagate out of the computational domain without

reflection. Periodic boundary conditions are applied such

that an infinite cascade is modeled.

The computed steady state solution is compared with

experimental data for a high-work low aspect ratio turbine.

The ability to obtain a reasonably accurate blade loading

diagram within a practical execution time is demonstrated.

Two oblique shocks, typical of those formed at the trailing

edge of a transonic rotor blade, are captured. These shocks

are smeared over several grid points, as expected with a

shock capturing scheme, but their influence on the blade

loading diagram is evident.
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DEVELOPMENT OF A SHOCK CAPTURING CODE FOR USE AS A TOOL IN

DESIGNING HIGH-WORK LOW ASPECT RATIO TURBINES

I. Introduction

Modern aircraft gas turbine engines have higher core

engine pressures and temperatures than their predecessors.

These engines require high pressure turbines with higher

work output and lower corrected mass flow than earlier

generation turbines (20:1). This type turbine incorporates

blading with high turning, high hub-to-tip ratio, and low

aspect ratio. The high hub-to-tip ratio and low aspect

ratio are both detrimental to turbine efficiency. The high

hub-to-tip ratio leads to boundary layer growth on the inner

and outer annulus walls, while the low aspect ratio leads to

secondary flow losses from turning the boundary layer

through a large angle (4:267,271).

The flow field typically consists of regions of

subsonic, transonic, and/or supersonic flow; with shock

waves often forming in the transonic and supersonic regions.

The shock waves further reduce turbine efficiency due to

total pressure losses and shock-boundary layer interaction.

Figure 1 is a schlieren photograph of the flow through a

transonic turbine rotor cascade with an isentropic exit Mach

number of 1.15. The shocks emanating from the trailing

edge of the blades and the reflection from the suction

1
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- surface are clearly visible, as is the presence of a

separation bubble where the shock intersects the suction

surface. This figure also depicts the spatial periodicity

of the flow field. The present work is directed toward

locating these shocks and providing the designer with a

reasonably accurate blade loading diagram.

A two-dimensional solution of the time dependent Euler

equations is undertaken since they provide the capability to

compute mixed subsonic, transonic, and/or supersonic flows

and also capture shocks. A modified version of Shang's

implementation of the MacCormack scheme is used to march the

solution in the time domain (19).

All computations are carried out in a reference system

* attached to the rotor. Figure 2 depicts a typical turbine

stage with the station numbering conventions outlined in

reference 12. The subscript R denotes the relative

reference system, defined as the reference system moving

with the rotor. Velocities in this system are given the

symbol W, while velocities in the nonrotating reference

system are given the symbol V. The symbol U denotes the

rotational speed. A computational domain is established

between two adjacent rotor blades. The domain extends

upstream of station 2R and downstream of station 3R by

approximately one-half of the rotor axial chord length. A

typical grid, with 76 points in the axial direction and 33

points in the tangential direction, is shown in Figure 3.

3
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The code developed during this effort, hereafter

referred to as BLD2BLD, is used to investigate three

different problems with known steady state solutions. A

cascade of wedges with an inlet Mach number of 2.0 and

completely supersonic flow is used to demonstrate the

ability of BLD2BLD to capture well defined oblique shocks.

The results are compared to the exact solution presented by

Denton (6:7). For the second case, BLD2BLD is used to

compute the flow field in the rotor passage of a high-work

low aspect ratio turbine tested in the NASA Lewis Research

Center's Warm Core Turbine Test Facility (20). The loading

diagram obtained from BLD2BLD is compared to the design

loading diagram obtained from NASA's TSONIC code (20). The

final case utilizes the NASA turbine's geometry but the exit

static pressure is reduced beyond that tested by NASA. This

case is thought to be representative of the conditions

currently being investigated by turbine designers.

5
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II. Analysis

The present section provides a synopsis of the

governing equations and boundary conditions applied in the

BLD2BLD code. The Euler equations are written in

conservative form and their applicability to shock capturing

is discussed. A coordinate transformation is then applied

to facilitate the numerical solution and application of

boundary conditions. Next, the appropriate boundary

conditions for flow through a blade passage are developed.

These boundaries are the radiative boundaries at the inlet

and exit, the periodic fluid boundaries, and the blade

surfaces.

Governing Equations

The Euler equations are statements of the conservation

laws for mass, momentum, and energy assuming an inviscid

nonconducting gas. The favorable pressure gradient and high

Reynold's number in an axial flow turbine make the Euler

equations an attractive alternative to the Navier-Stokes

equations as long as heat transfer or skin friction data are

not desired. The customary forms of the conservation laws

for mass, momentum, and energy in the absence of body forces

are

Dp+

7



= -vp 1 (2)

De + (3)

where p is the density, F is the velocity vector, p is the

pressure, e is the internal energy per unit mass, and EL isDt

the substantial or total derivative given by

D W.V
Dt a + W-V (4)Dt a

The symbol W is used as a reminder that the governing

equations are written in a frame of reference attached to

the rotor. When Eqs (1), (2), and (3) are expanded using

Eq (4) and rearranged such that p, pu, pv, and Et are the

dependent variables the conservative or divergence form of

the governing equations is obtained. The symbols u and v

denote components of the velocity vector, W, in the x and y

directions defined by a Cartesian coordinate system. Et is

defined to be the total energy per unit volume given by

E t = P (e + U2/2 + v2/2) (5)

Roache states that the conservative form of the governing

equations for inviscid compressible flow was given by

Courant and Friedrichs in 1946 (15:211). Lax showed that

the conservative form of the governing equations satisfies

the weak solution of the Rankine-Hugoniot relations and thus

correctly predicts the Jump conditions across the shock

8



discontinuity (15:211, 3:272). In fact, use of the

conservative form is necessary for the discontinuity to

physically represent a shock wave when numerical

shock-capturing schemes are applied (3:272).

References 7 and 15 present derivations of the

conservative form of the Euler equations and such a

derivation will not be repeated here. The results will

simply be stated and placed in vector form as given in

reference 3.

Eq (1) is already in conservative form which is

apparent when Eq (4) is used to expand the substantial

derivative. Some manipulation of Egs (2) and (3) is

necessary to obtain their conservative forms with the end

09 result being, for two-dimensional flow

W+ ! (Pu)+-(Pv)=o (6)

0(u) + !(Pua+ p) + 0(Puv) = 0 (7)

0 (Pv) + tj(Puv) + !jL(pv--+ p) =0 (8)

.(Et) + '0 [(Et+ p)u] + !L4 it+ p)v] =0 (9)

The conservative form is often referred to as the

divergence form because the equations identify the

divergence of physical quantities (3:50). This structure

allows the governing equations to be written in vector form:

d+SE+ -=f 0 (10)

9



where U contains the dependent variables, E contains the

terms differentiated with respect to x, and F contains the

terms differentiated with respect to y. The elements of U,

E, and F are:

P u+ p puv

U puv pv + P

L: ECt L(E+ p[ jL (E+ ]v j

The governing equations are more easily solved in a

rectangular uniformly-spaced computational domain than in a

nonrectangular physical domain with nonuniform spacing.

Thus, the governing equations need to be transformed from a

Cartesian coordinate system to a general coordinate system.

The general spatial transformation

= C(x,y) (Ii)

= n(x,y) (12)

is used to transform Eq (10) from the physical domain (x,y)

to the computational domain (Cn). The partial derivatives

in the physical domain become

= + x (13)

x +
= ;ya + y j1 (14)

where the subscripts x any y denote differentiation with

10



!.

respect to x or y. The terms x C y 'x' and nare known

as metrics. The Jacobian of the transformation given by

Eqs (11) and (12) is

*(j (C) W x C I (15)
O(X , y = IX 15Yi

The Jacobian is evaluated as follows:

J = 1 1/ x = 1/ (x, y,,- x. y.) (16)

where the subscripts C and Y? denote differentiation with

respect to C or Y). The differentiations are carried out

using finite difference representations since analytical

expressions are not available (3:254). The metrics are

determined from the relations

Cx = J yl (17)

r= -J x7)  (18)

)x -J YC (19)

y = J x C (20)

Applying this generalized transformation to the governing

equations in vector form, Eq (10), results in

Ut+ CxEC + yxE + CyFC + 7yF = 0 (21)

A numerical solution is sought for the governing equations

in the above form.

11



Boundary and Initial Conditions

The Euler equations, given in vector form in Eq (10),

are hyperbolic for all flow regimes as long as the

time-dependent terms are retained. This hyperbolic behavior

requires that both boundary and initial conditions be

specified. The importance of boundary and initial

conditions in the solution of partial differential equations

(PDE's) has been commented on by Roache:

A first-order ordinary differential equation such
as df/dx = 0 specifies the solution of a problem up to
an additive constant; the boundary condition determines
the value of the constant. A first-order partiaL
differential equation such as Of(x,y)/fx = 0 specifies
very little of the solution; any function g(y)
satisfies the PDE, and the boundary conditions must

specify the function. A PDE such as 7w = C [w is the
stream function and C is the vorticity) really

fit contains very little information on W. All the
fantastic flow patterns of common gases and liquids are
solutions of the same PDE's, the Navier-Stokes
equations. The flows (solutions) are distinguished
only by boundary and initial conditions, and by the
flow parameters such as Re [Reynold's number] (15:139).

Roach suggests that the most difficult boundary condition in

compressible flow occurs at a simple wall (15:261).

However, for internal flows the most difficult boundary

conditions occur at the inlet and exit of the passage when

the flow is subsonic at one or both of these locations.

Also, the periodic boundary conditions required for an

infinite cascade model are a formidable challenge. The

boundaries that must be dealt with are shown in Figure 4.

Radiative Boundary Conditions. The current effort is

directed towards achieving a steady state solution in the

12
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rotor passage. Unsteady behavior due to interaction between

the stator and rotor blade rows is not considered. Since

Eq (10) is hyperbolic it exhibits wave behavior (7:161).

All waves radiating outward from inside the computational

domain should pass the inlet or exit without being

reflected. This requirement is met by recasting the

governing equations into characteristic form and applying

simple wave theory.

Erdos and Alzner (8:21-33) and Scott and Hankey

(16:144-145) report use of the method of characteristics to

propagate disturbances out of the computational domain.

However, Scott and Hankey only applied the method at the

upstream boundary. They dealt with a compressor cascade

having a supersonic relative velocity entering the rotor

with the axial flow remaining subsonic. The relative

velocity exiting the rotor was subsonic. They inserted a

convergent-divergent nozzle downstream of the exit to

achieve supersonic flow so that supersonic flow conditions

could be applied at the outflow boundary (16:145). The

insertion of a convergent-divergent nozzle downstream of the

rotor, while a novel solution for the compressor problem,

limits the exit flow from the rotor to subsonic velocities.

Modern high-work turbines often have supersonic exit

velocities. To allow generalization of the current work to

both subsonic and supersonic exit velocities, simple wave

theory Is applied herein.

14



Erdos and Alzner state,

The characteristic surfaces formed by the
hyperbolic system of differential equations . . .
consist of a conoid with its base on the x,y plane and
within it a stream path which intersects the conoid at
its vertex. If the vertex is placed at a grid point at
time t+At, the base covers the domain of dependence of
the point at time t (8:22).

A more manageable approximation of the above two-dimensional

characteristic theory is obtained when the characteristic

surfaces are replaced by characteristic curves. This yields

the familiar one-dimensional characteristic directions shown

in Figure 5 (8:23). The inlet and exit variables that are

not directly specified as boundary conditions are updated

using the compatibility relations, or Riemann Invariants,

that are valid along the appropriate characteristics.

E tThe characteristics AO and CO shown in Figure 5 are wave

paths while the remaining characteristic, BO, is the

particle path. The wave paths are given by

dxd u + a (22)

dx
d u - a (23)

where a is the local speed of sound. The remaining equation

is that of the particle path:

dxd = u (24)

Referencing Erdos and Alzner (8:22), some discussion of

the characteristic directions is in order. If Station 2 is

15
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the inlet plane, Station 3 lies inside the computational

domain and Station 1 does not exist. Only one

characteristic, CO in Figure 6a, lies inside the domain to

relate the conditions at t' a to the known conditions at t".

Three boundary conditions, described later, must be

specified at the inlet. One of these boundary conditions

replaces the compatibility relation along the wave path

upstream of the inlet. The other two conditions replace the

characteristic along the particle path. The above

statements apply when the Mach number at the inlet is

subsonic. If the Mach number at the inlet were supersonic,

all characteristics would originate upstream of the inlet

16
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Figure 6. Applicable Characteristics at Inlet and Exit

and the solution at this boundary would be known.

Similarly, if Station 2 is the exit plane, Station 1

lies inside the computational domain and Station 3 does not

exist. Two characteristics, AO and BO in Figure 6b, lie

inside the domain to relate conditions at t"*' to the known

conditions at t". Only one boundary condition at the exit

can be specified, replacing the compatibility relation along

the wave path downstream.

Particle Path Characteristics. For an Inviscid

adiabatic flow in the absence of shocks, an alternate form

of the energy equation written along the particle path is

Ds
0 (25)

17



where s is the entropy (7:31). Integration of Eq (25) along

the particle path given by Eq (24) yields s = constant

Thus the compatibility relation along the particle path can

be written as

P/PY = constant (26)

Wave Path Characteristics. The derivation of the

wave path characteristics follows the outline given by Erdos

and Alzner (8:25-28). For clarity, the equation of state

that Erdos and Alzner begin with will be derived. This

equation of state relates pressure to the state variables

density and entropy. The starting point is the Gibbs

equation:

Ito
Tds = de + pdv (27)

where T is the temperature and v is the specific volume.

The static enthalpy, h, is by definition

h = e + p (28)

thus

de + pdv = dh - vdp (29)

Eq (29) is substituted into Eq (27) giving

Tds = dh - udp (30)

Eq (30) is rewritten using the equation of state, P pRT ,

and the differential form of enthalpy for a perfect gas,

18



dh = CPdT , to obtain

ds CpdTA - R dp/p (31)

where C. is the specific heat at constant pressure and R is

the gas constant. For a calorically perfect gas, Eq (31) is

integrated between states 1 and 2 to give

rt -"c 1]
ADA - in [T/sr- P1 j (32)

where As = s- sI and , is the ratio of specific heats.

Emanuel then performs the substitution (7:17)

sj/R = -ln /,s J + constant (33)

leading to

p = karexp (5/Cv) (34)

where k is a constant and the state 2 subscript has been

dropped. Eq (34) is the state equation used to initiate the

derivation of the compatibility relations along the wave

path characteristics.

Taking the natural logarithm of both sides of Eq (34)

and differentiating the result using the substantial

derivative leads to

1/p RE = ,/P Dp +1/Cv DsDD (35)

19



where Cvis the specific heat at constant volume. Applying

the definition of the substantial derivative and using the

energy equation, Eq (25), gives

/4 !! + u t+ v - !!P-+ u ! + v ! (36)

The continuity equation, Eq (6), is substituted into the

above relation, and the result multiplied by the speed of

sound, to obtain

a -0 + -0 + vOP a +!tL(37)

The next step is to add and subtract the streamwise momentum

equation, Eq (7), to the above relation. Eq (7) is first

transformed Into nonconservative form using the continuity

equation:

U
+ u!!E+ v!!= - /pop (38)

Substituting Eq (38) into Eq (37) and collecting like terms

a-~ [ + (u± a) -&2 + , !

- + (u- a) ! + v ;-a . (39)

This equation becomes an exact differential:

a d du -a !L (40)

20



on the equations of the characteristic lines (8:26)

dx !!Y = dt (41)
u+_a v

Eq (41) represents the characteristic directions shown in
Figure 5. With ds = 0 ,Eq (31) yields !p = y dT

p r

Substituting this relation into Eq (40) and neglecting the

term outside the computational domain givesgive

- -dT + du = 0 (42)

Eq (42) is integrated to yield the well known Riemann

invariants:

2a + u = constant

The Riemann invariants are often referred to as integrated

forms of the compatibility relations (7:163).

Determination of Inlet Boundary Conditions. The

key to determining the proper boundary conditions is to

treat the inlet as if it was part of a duct extending

infinitely far upstream. All waves radiating from the

computational domain should pass the inlet, without

reflection, and continue travelling upstream for all time.

As previously mentioned, if Station 2 in Figure 5 is taken

to be the inlet plane then the only straight characteristic

that exists is the line CO. This straight characteristic is

known as a characteristic of the first kind (9). The

21



straight characteristics AO and BO do not exist since the

wave is travelling upstream. However, a curved

characteristic exists which extends into a quiescent region

of uniform thermodynamic properties. This characteristic is

known as a characteristic of the second kind (9). These

characteristics intersect at point 0 in Figure 6a, a grid

point at the inlet, at time t" '. Application of the

Riemann invariants along both types of characteristics

results in a system of two simultaneous equations to be

solved for the variables u and a. Specification of the

velocity direction at the inlet, along with the assumption

of one-dimensional flow upstream and immediately downstream

of the inlet, allows use of a coordinate system with axes

aligned parallel and perpendicular to the flow. In this

coordinate system the Riemann invariants given by Eq (43)

become

2a- + W = constant (44)

r-l-

where W is the magnitude of the velocity vector W. The

benefits of the one-dimensional flow assumption immediately

downstream of the inlet will become apparent when the

numerical implementation of the characteristic theory is

discussed in the next chapter. The two simultaneous

equations are now in the variables W and a.

The procedure for determining the inlet boundary

conditions starts with specification of a, W, and p in the

22
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quiescent region upstream. These values are denoted by the

symbols a .' and p.. The inlet speed of sound and

velocity at time t"'' are related to the known speed of

sound and velocity at point C at time t through the Riemann

invariant along the upstream travelling wave:

2 2
- a - w- a-w (45)
r-1 - c Wc

where the subscript c denotes the values at point C.

Along the characteristic of the second kind

2 a+ 2
-a + 2 - a + W (46)

Simultaneous solution of Eqs (45) and (46) for the speed of

sound at the inlet results in

a a ) + c )(47)

With the speed of sound known, the velocity is obtained from

Eq (46):

W= - ( a - a ) + V. (48)

The pressure is obtained from the isentropic relation

p = p,( a/a 0 ) ( (49)

With the speed of sound and pressure known the state point

23



is fixed, uniquely determining the density and internal

energy.

Determination of Exit Boundary Conditions. The

development of the exit boundary conditions closely follows

that for the inlet conditions. The exit is treated as an

open-end duct that exhausts into a plenum. This requires

that the exit pressure match the plenum pressure. Again

referring to Figure 5, the characteristics AO and BO

originate inside the domain and the characteristic CO does

not exist since the wave is travelling downstream. Since

entropy is convected along particle paths (7:24), the

density is determined from the isentropic relation

P = ( P/Pb )/r (50)

where p has been specified and the subscript b denotes the

values at point B. The pressure and density fix the state

point so the temperature, hence speed of sound and internal

energy, is uniquely determined. The exit velocity is

obtained by evaluating the Riemann invariant along the

characteristic AO:

2
a - (a - aa ) (51)

Lateral Boundary Conditions. Only one blade passage of

an infinite cascade is being analyzed, therefore the

conditions along the lateral boundaries must be periodic

except on the blade surfaces. Along any axis perpendicular
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to the axial direction

CP)I= Wi)L (52)

~(54)

(Et)= (Et)JL (55)

where 1 denotes the lower boundary and JL denotes the upper

boundary. For an inviscid flow, the only condition that can

be applied along the blade surface is the requirement of

surface tangency.

Initial Conditions. Two classes of initial conditions

are investigated. The first class is termed a cascade

tunnel start because of its analogy to the starting of an

indraft cascade tunnel. The domain is initialized at the

stagnation conditions associated with the quiescent region

upstream of the inlet. At time t the exit pressure is0

instantaneously applied Just as if a valve had been opened

to a low pressure plenum downstream of the exit. The second

class of initial conditions consists of using a restart file

available from a previous solution. The restart file is

used to initialize the domain before applying new quiescent

region conditions or a new exit pressure. As an example, if

solutions are desired for several different values of the

exit pressure, the cascade tunnel start could be used for

the highest exit pressure and then the restart file used to
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initialize the domain for the next pressure investigated, or

vice versa.

Of the two classes of initial conditions, the cascade

tunnel start is perhaps the most noteworthy. It has been

pointed out by Gray (9) that the cascade tunnel start is

possible due to application of characteristic theory at the

radiative boundaries. If the dependent variables were

explicitly stated at the inlet and exit a better initial

approximation of the steady state solution would be required

such that large disturbances could not pass these radiative

boundaries.
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III. Solution Technique

The time-dependent Euler equations, given in vector

form as Eq (21), are hyperbolic with respect to time. This

hyperbolic nature allows the solution to be marched in time

even though the flow may consist of mixed subsonic,

transonic, and/or supersonic regions (3:259). The numerical

technique used to obtain a solution of the Euler equations

for steady flow in a turbine cascade is discussed in this

chapter. Details of the finite differencing scheme and

numerical implementation of the boundary conditions are

covered. Stability and convergence, allowable time step

size, and numerical damping are also mentioned.

Finite Difference Scheme

MacCormack's explicit finite difference scheme is used

to obtain a time marching solution of the Euler equations

(21). The BLD2BLD code is a modified version of Shang's

three-dimensional code (17,18). The modifications were

necessary to adapt the code for solution of two-dimensional

internal flows. These modifications have no effects on

Shang's implementation of the differencing scheme except at

the lateral boundaries. MacCormack's scheme is a two-step

Lax-Wendroff method. This scheme uses alternating forward

and backward differences for the predictor and corrector

sweeps respectively. -.r, predictor and corrector sweeps

applied to the Ruler equations in a Cartesian coordinate
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system, Eq (12), are defined as (11:151)

-- _ AtE- E _(56)

Y ( L,j F(7

where e. and F . equal E 1 .J and FLUn.). The

subscripts i and J denote a mesh of points (x.,y.) with

uniform spacing Ax and Ay. The superscript n refers to the

time t = nAt where At is the time increment for one

predictor-corrector cycle. Finally, the overbaT denotes

predicted quantities. MacCormack points out that using a

forward difference for the predictor and a backward

difference for the corrector represents only one of four

possible differencing methods (11:151). In this effort only

the variation given by Eqs (56) and (57) is implemented.

The code achieves maximum efficiency by utilizing the

Courant-Friedrich-Lewy (CFL) condition derived by Shang

from a stability analysis (18:4):

At 1/fi u. + u.+ a Lx +!-
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where AtcrL is the allowable time step size and u and u

are the contravariant velocities defined as

uC = Cxu + CyV (59)

u ) = Xu + YyV (60)

The CFL condition requires that the physical domain of

dependence lie within the numerical domain of influence.

The numerical domain can be larger, but not smaller, than

the physical domain (3:76). Anderson reports that

hyperbolic systems tend to behave best when the numerical

and physical domains of influence are nearly equal (3:77).

The CFL numbers used in the present work ranged from 0.2 to

0.8, with 0.8 used most often. Satisfaction of the CFL

S, condition is necessary for stability of the MacCormack

scheme. Lax's equivalence theorem equates stability and

convergence of a consistent finite difference scheme, for a

linear system of equations (3:49). This theorem has never

been proven for nonlinear equations, such as the Euler

equations, but this work proceeds under the assumption that

the theorem applies.

Explicit numerical damping is applied to suppress

numerical oscillations. The damping is applied in each

sweep direction using Shang's modification of MacCormack's

fourth-order pressure damping terms (17:1349):

29 lual+
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where 13 is the damping coefficient. In the present work a

damping coefficient of 2 is consistently used.

Implementation of Boundary Conditions

Attention is now focused on the numerical

implementation of the boundary conditions developed in the

previous chapter. The only boundaries that require

additional computations beyond the predictor-corrector

differencing are the inlet and exit. The conditions at the

lateral boundaries, both the periodic boundaries and the

blade surfaces, are obtained with modifications of the

9 predictor-corrector differencing scheme.

Radiative Boundaries. The simple wave theory used to

determine the appropriate values of the dependent variables

at the inlet and exit was developed in Chapter II. The

numerical implementation of this theory is the subject of

this section. Referring again to Figure 6a, if station 2 is

the inlet plane the conditions at any node point at time

tn 1 is related to conditions at point C at time t" through

the Riemann invariants, Eq (45). The conditions at any

inlet node point are similarly related to conditions in the

quiescent region upstream through Eq (46). The speed of

sound, velocity, and static pressure in the quiescent region

are specified as inputs to the code. The conditions at

30



point C thus need to be determined in order to evaluate the

conditions at the inlet. This is the point where the

one-dimensional flow assumption immediately downstream of

the inlet becomes advantageous. A coordinate system is

aligned with the flow direction at the inlet such that one

axis, denoted X', is aligned with the flow. By construction

this axis is also aligned along a line of 7, hence the J

index, equal to a constant as shown in Figure 3. This

construction allows the equation of the characteristic,

Eq (23), to be written as

dx'/dt = W - a (63)

Point x'is located through an iterative solution of the

equation obtained by integrating Eq (63):

= C - aC )&t (64)

with linear interpolation used to determine the flow

properties at point C. The code uses the Newton-Raphson

method (10:764) to perform the iterative bolution of Eq (64).

In addition, bisection is used as a fail-safe whenever the

Newton-Raphson method would take the solution out of bounds

(14:258). Once point C is located and the flow properties

obtained, Eqs (47)-(49) are used to determine the flow

properties at the inlet.

The exit boundary conditions are implemented in a

similar fashion to those at the inlet. Referring to
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Figure 6b, if station 2 is taken as the exit plane the

characteristics AO and BO are available to relate conditions

inside the domain at time t" to exit conditions at time

t"n+. After applying a one-dimensional flow assumption

immediately upstream of the exit the characteristic

equations become

x x'.t- ( W+ a (65)

and

X x' - W At (66)
]a Oxit

Points A and B are located through an iterative solution of

Eqs (65) and (66) with linear interpolation used to

determine the flow properties. With the exit pressure, P ,

given as input to BLD2BLD the exit boundary conditions are

determined using Eqs (50) and (51).

Lateral Boundaries. The flow properties along the

lateral boundaries are not explicitly specified but rather

are determined using slightly modified forms of the

MacCormack scheme. Along the periodic boundaries the

conditions given by Eqs (52)-(55) are met by actually

performing the predictor and corrector sweeps at the

boundary. If a forward predictor is applied at the upper

boundary, denoted by JL, the flow properties at J = JL + 1

are needed. Since this line of points does not exist when

only one blade passage of an infinite cascade is being

modeled, the properties at j = JL + 1 are replaced by the
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conditions at J = 2 . An analogous procedure is followed

when a backward predictor is applied at the lower boundary.

If the lower boundary is denoted by J = 1 , the conditions

at J = 0 are replaced by the condition at j = JL - 1

This differencing procedure appears to satisfy the

periodicity requirement up to approximately one point away

from the leading and trailing edges.

The appropriate boundary condition along the blade

surfaces is the surface tangency requirement, W • n = 0 ,

where n^ is the surface normal (15:261). The MacCormack

scheme is applied directly at the blade surface, using

forward differences for both the predictor and corrector on

the suction surface and backward differences for both sweeps

along the pressure surface. Differencing in the same

direction for both the predictor and corrector is usually

unstable, but Anderson points out that the surface tangency

condition affects the solution such that stability is

maintained (3:277).

Solutions to a variety of test cases were attempted

prior to attempting the solution for an infinite cascade.

These test cases ranged from fully subsonic flow through a

curved duct to fully supersonic flow through a duct with

surface discontinuities to generate shock and expansion

waves. The above boundary conditions, less the

periodicity constraint, were applied to the test cases with

excellent results.I
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Numerical difficulties are encountered at the periodic

downstream boundaries if the cascade tunnel start is used.

A similar difficulty was observed by Scott and Hankey

(16:146). They alleviated the problem by treating the

downstream lateral boundaries as solid surfaces until the

solution evolved to a point that the flow became aligned

with the channel (16:146). The same remedy is applied to

the current effort, eliminating the difficulties.

3
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IV. Results and Conclusions

Results

This section describes the results obtained when the

BLD2BLD code is applied to three different test cases. The

first solution is for a cascade of wedges with an inlet Mach

number of 2.0 and supersonic flow throughout the passage. A

solution is then obtained for the NASA high-work low aspect

ratio turbine rotor described in reference 20. The NASA

turbine geometry is used for the third solution but the exit

pressure is dropped below that of the NASA tests. This

results in a supersonic exit Mach number typical of that

currently under consideration by turbine designers.

Case One. Cascade of Wedges. The cascade of wedges

presented by Denton is used to demonstrate the ability of

BLD2BLD to capture well defined oblique shocks (6:7). This

cascade is shown in Figure 7. The cascade has an inlet Mach

number of 2.0 and is designed such that the leading edge

shock is exactly canceled upon reflection to the upstream

corner resulting in uniform flow between the two parallel

surfaces. The grid used consists of 125 points in the

axial direction and 26 points in the tangential direction.

The computed static pressure contours are shown in Figure 8.

The shock that forms at the leading edge is smeared over

several points, as is typical for a shock capturing

scheme, and is smeared even more upon reflection. As a
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Figure 7. Cascade of Wedges

Q4 m

Figure 8. Static Pressure Contours for Cascade of Wedges
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result, the reflected shock does not exactly meet the

upstream corner and a weak shock is reflected back across

the passage. Additionally, a weak expansion emanates into

the region between the parallel surfaces. Two oblique shock

waves occur at the trailing edge, similar to the oblique

shock waves occurring at the trailing edge of the turbine

blades shown in Figure 1. These trailing edge shocks are a

result of the periodicity conditions applied immediately

downstream of the trailing edge. Figure 9 contrasts the

exact and computed solutions in terms of Mach number versus

the non-dimensional chord length. Numerical oscillations,

or dispersive errors, occur near the points where the shock

and expansion waves are generated or reflected. These

1* dispersive errors are typical of second-order methods such

as MacCormack's (3:92). The oscillations near the leading

edge may also be aggravated by the periodicity conditions

immediately upstream. Figure 9 also shows that the weak

shock generated due to smearing intersects the lower surface

near 60 percent of the chord length. An exact solution for

the expansion along the lower surface was not presented by

Denton. Denton attributes the exact solution to Brown

Boveri & Co. of Baden, Switzerland (6:9).

Case Two. NASA High-Work Low Aspect Ratio Turbine.

The BLD2BLD code is now used to obtain a steady state

solution for the flow in a blade passage of an experimental

turbine. The experimental turbine is a 0.767 scale model of

37



4a 0

00

4 0 o 0

,0 0

3O
0

0

4 0
0

0
0 w

40 to
04

4 
04

o

04

o 4

0
4 0

o 4
o -4

Wo =

0 in
0 40

ca o0 to 40

1 00
M -j 4 o

0, o 00
o ad go 0 -

4 0

44 4 0i

4 0

4 00N
4 0

04

qj)4 04
U~ 0 465

,4

A 00 ~ ~
NN0 40

4o

400

40
40

40

4

4

4-

383

<S O'N

44M

4 
0

,be

44

4

F I I I4

#4-IV



the first stage of a two stage high pressure turbine

designed for use in a high bypass ratio engine. This model

was tested In the NASA Lewis Research Center's Warm Core

Turbine Test Facility and the results are well documented in

reference 20. Even though strong secondary flows

occurred in the tests (20:5), this turbine was chosen for

comparison because of the difficulty in obtaining

two-dimensional cascade data.

Figure 10 shows the mean-line velocity diagram obtained

from the NASA experiment. Using the mean-line blade

coordinates given in Table 1, and the relative gas angles

from Figure 10, the grid shown in Figure 3 is constructed.

The grid consists of 76 points in the axial direction

((/VCr)V/V.g)

. U/VCr ) 0. see
49 2%, C W r )a d..-6 . 3

A*010

.J ( V/VCr ),.,.q d..23.2"

(U/Vcr)3.68 98

Figure 10. Experimental Mean-Line Velocity Diagram (20:22)
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Table 1. Rotor Blade Coordinates (20:8)

Hub Mean Tip

Stagger angle, a (deg)
x

31.74 37.93 43.20
YL Yu ¥L Yu YL Yu

-0.011 0.521 0.521
-0.004 0.441 0.441

0.000 0.280 0.762 0.305 0.580 0.305 0.305
0.200 0.018 1.269 0.018 1.139 0.018 0.955
0.400 0.015 1.472 0.015 1.325 0.015 1.162
0.600 0.215 1.582 0.204 1.431 0.192 1.272
0.800 0.501 1.640 0.427 1.486 0.373 1.332
1.000 0.660 1.660 0.559 1.506 0.475 1.359
1.200 0.750 1.646 0.637 1.499 0.537 1.362
1.400 0.792 1.606 0.676 1.471 0.572 1.347
1.600 0.798 1.544 0.689 1.426 0.589 1.319
1.800 0.777 1.465 0.681 1.368 0.590 1.279
2.000 0.739 1.373 0.658 1.299 0.579 1.230
2.200 0.687 1.272 0.624 1.222 0.559 1.173
2.400 0.625 1.162 0.581 1.137 0.531 1.109
2.600 0.555 1.046 0.531 1.047 0.496 1.039
2.800 0.478 0.924 0.476 0.951 0.457 0.965
3.000 0.396 0.797 0.415 0.850 0.414 0.886
3.200 0.308 0.665 0.350 0.745 0.366 0.802
3.400 0.215 0.528 0.281 0.636 0.316 0.715
3.600 0.119 0.387 0.209 0.524 0.262 0.625
3.800 0.018 0.242 0.134 0.408 0.206 0.532
3.946 0.089 0.089
4.000 0.056 0.290 0.148 0.437
4.200 0.009 0.169 0.088 0.338
4.249 0.089 0.089
4.400 0.026 0.238
4.586 0.089 0.089
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and 33 points in the tangential direction. The grid

extends approximately one-half axial chord length upstream

and downstream of the blades, and the blade pitch is

3.059 cm. The lines of constant 77 are aligned with the

relative gas angles at each end of the grid. The blade

surface coordinates are obtained using a cubic spline

interpolation (14:86-89). In addition, the rounded trailing

edge was replaced by a sharp trailing edge for computational

purposes. The grid was generated using the algebraic

portion of Amdahl's ORTHGNL grid generation code (1).

The inlet and exit conditions necessary for input to

BLD2BLD are derived from the following NASA test

data (20:6-9, 22):

r = 1.4 Tt = 422.2 K

P 31.03 X 10' N Pt = 1.704

Pt2/P = 1.652 Pt APt3= 2.360
t2R /3t1 /t3=

(V/Vcr) 2 = 0.888 (V/Vet) 3 = 0.384

(W/WcV) 2 = 0.381 (V/Wcr)3 = 0.841

where t identifies total properties, R denotes a frame of

reference moving with the rotor, cr is a condition

corresponding to a Mach number of unity, and the station

numbering and velocity symbols correspond to those shown In

Figure 2. Note that the test data specifies velocity ratios

rather than Mach numbers. This is a convention typically
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L.

followed by turbine designers. Although assumed constant

for the present work, the specific heats can vary

significantly through some turbines. This results in

significant r, hence Mach number, variations. Thus velocity

ratios are more meaningful to the designer. The Mach number

is related to the velocity ratio through the equation (2:5)

2 1 (1 ] (69)

As stated in Chapter III, the speed of sound, velocity, and

static pressure in the quiescent region upstream of the

Inlet are required as input to BLD2BLD. The speed of sound,

velocity, and static pressure at station 2R, obtained from

the test data, are input as the conditions existing in the

quiescent region. Assuming the flow through the stator is

adiabatic, the static temperature at station 2R is obtained

from (2:5)

T T 1- +1( (70)
T2R tl1  102

resulting in To = T2R = 366.71 K and a. = 383.91 m/s

Rq (69), with V/Vcr replaced by W/Wcr, is used to arrive at

M21 = 0.352 thus giving W. = M2R a. = 135.14 m/s . The

static pressure is obtained directly from the given values

of P t and Pt A 2 as P. = 18.21 X 10' N/n2 . The static

42



pressure at station 3R is input to BLD2BLD as the exit

pressure, P e The static pressure is obtained from theCI
relation (2:5)

3R =  [1 - 1 71)

3 cr3

Pt is obtained directly from the test data givingt3

P= P3R = 12.05 X 10'4 N/m . All required input to BLD2BLD

is now available.

The BLD2BLD solution shows that the rotor is choked at

the throat, as shown by the Mach contours of Figure 11 and

the static pressure contours of Figure 12. The NASA test

data also suggest that the rotor was choked, or very nearly

so, at the conditions described above (20:3). The average

value of (W/Vcr)2 is slightly lower than the test data,

0.364 compared to 0.381, probably due to a slight narrowing

of the throat dimension when the blade surfaces were

numerically generated. The Mach contours of Figure 11 and

the static pressure contours of Figure 12 suggest that two

shock waves are emanating from the blade trailing edge. The

presence of these shocks is verified upon examination of

Figures 13 and 14. These figures show that the shock wave

emanating from the pressure surface strikes the suction

surface near 65 to 70 percent of the axial chord. The exact

location cannot be determined because of shock smearing. A

reflection from the suction surface, similar to Figure 1,
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Figure 11. Mach Contours for Case Two
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Figure 14. Surface Pressures (P/P2) for Case Two
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*can not be detected because of this smearing. The existence

of these shocks can not be verified from the experimental

data, since NASA's experimental apparatus was not equipped

to sense the presence of shocks. Figures 11 and 12 also

show the presence of a second shock emanating from the

trailing edge of the suction surface. These shocks form

because of the periodicity requirement downstream of the

blade trailing edge. If the lateral boundaries upstream and

downstream of the blade are treated as solid walls these

trailing edge shocks are not generated. Referring to Figure

15, a normal shock then forms downstream of the throat, as

verified by a solution using BLD2BLD, such that the

specified exit pressure is met. The pressure is

discontinuous across the normal shock, with the upstream and

downstream pressures denoted by pup and Pdn respectively.

If periodicity is then applied, a pressure discontinuity

exists across the stagnation streamline. The normal shock

Is thus replaced by two oblique shocks that align themselves

such that no pressure discontinuity exists across the

streamlines.

Referring again to Figure 13, the loading diagram

obtained from BLD2BLD is compared with the design loading

diagram obtained from NASA's TSONIC code. The two codes

compare favorably except near the leading edge of the

pressure surface and in the vicinity of the shock waves.

Experimental measurements on transonic turbine blades,
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presented by Denton (6:7), suggest that the BLD2BLD solution

is more representative of the blade loading near the

pressure surface leading edge. Comparisons with TSONIC can

not be made in the vicinity of the shock waves for two

reasons. First, TSONIC may have been applied to a geometry

with a slightly larger throat dimension, thus alleviating

choking. Second, there is some question in the design

community about TSONIC's ability to deal with shocks (9). A

qualitative comparison of BLD2BLD's shock capturing ability

can be made against the widely used Denton code (6). The

Denton code employs a pitchwise smoothing of the flow

properties in addition to pressure damping. This causes the

shocks to be smeared to the extent that the effect of a

(. shock emanating from the pressure surface is almost entirely

damped out before reaching the suction surface. Denton has

demonstrated this effect even at exit Mach numbers as high

as 1.42 (6:7). Even though BLD2BLD has a smearing effect,

as do all shock capturing schemes, the effect of a shock

impinging on the suction surface is evident from Figures 13

and 14. Examination of Figure 16 reveals a reduction in the

magnitude of the velocity vectors near the suction surface

due to a shock extending across the passage. The velocity

magnitude is further reduced as the suction surface trailing

edge shock is encountered. The average value of (W/Vcr)3

from the BLD2BLD solution is slightly larger than the value

obtained from the NASA test data, 0.879 using BLD2BLD
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compared to an experimental value of 0.841. The calculated

exit relative total pressure, Pt 3R, is also slightly larger

than the experimental value, 19.53 X 104 N/n calculated

versus 18.64 X 104 N^ 2 experimental. This is not surprising

in light of the strong secondary flows observed in the

experiment.

Case Three. NASA Turbine with Lowered Exit Pressure.

This final case uses the case two geometry and inlet

conditions, but the exit pressure is lowered to

8.05 X 104 N/m. The exit pressure is chosen, rather

arbitrarily, such that the exit Mach number is supersonic.

This case uses the same grid generated for case two. This

case is thought to be representative of the conditions

currently under consideration by turbine designers.

The BLD2BLD solution yields an average value of

(W/Wcr)3 of 1.127 corresponding to an exit Mach number of

1.159. Figures 17 and 18 show the computed Mach and

pressure contours respectively. Shock waves are again

present at the trailing edges of the pressure and suction

surfaces. Figures 19 and 20 show that the shock emanating

from the pressure surface is somewhat stronger than for case

two. The shock also impinges on the suction surface farther

downstream than for the previous case. The impingement now

occurs at approximately 80 percent of the axial chord. The

likelihood of flow separation increases as the impingement

point moves toward the trailing edge. The flow tends to
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reattach when the shock impinges farther upstream, as shown

in Figure 1. For a typical turbine rotor, the flow

separates from the suction surface Just prior to reaching

the trailing edge. Therefore as the shock impingement point

moves closer to the trailing edge the possibility of

separation increases. Figure 21 shows the velocity vectors

for case three.

Conclusions

A two-dimensional, time marching Euler code has been

developed to obtain steady state solutions for flows through

transonic turbine cascades. The simple wave theory applied

at the radiative boundaries allows any streamwise travelling

disturbance to propagate out of the domain without

reflection. The method of applying the periodic boundary

conditions appears to correctly model the conditions

existing in an infinite cascade. The code predicts the

formation of two oblique shocks at the blade trailing edges,

typical of those experimentally observed in transonic

turbine blades. The solutions obtained using the BLD2BLD

code compare favorably with the experimental data within

certain limits. These limits become evident by comparing

computed two-dimensional data, based on an inviscid

analysis, with three-dimensional experimental data strongly

influenced by viscous effects.

The data processing rate is 2.6 X 10-5 seconds per grid

point per time step for the CRAY-XMP computer. The solution
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is monitored until consecutive calculations show less than a

0.02 % change in the dependent variables. The solution is

then considered to be the asymptotic steady state solution.

A typical calculation begun with the cascade tunnel start

initial conditions requires approximately 8000 time steps to

achieve steady state convergence. This translates to 8.69

minutes of CRAY-XMP CPU time for the 76 X 33 grid used for

the NASA turbine case.
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V. Recommendations

The areas suggested for further study can be divided

into two categories, those related to improving the current

ability of the code to obtain steady state blade-to-blade

solutions and those related to extending the capabilities to

handle unsteady flows and viscous phenomena.

Three specific recommendations apply to the first

category. They are

1. Investigate the application of two-dimensional

characteristic theory at the periodic boundaries.

This should allow the removal of disturbances

propagating in the tangential direction with

4S minimal application of explicit numerical damping.

A reduction in the damping may allow better shock

wave definition and also allow capturing of the

reflected shock from the suction surface.

2. Remove the one-dimensional flow assumption at the

inlet and exit boundaries. Characteristic theory

would still be applied, but in a more general

fashion.

3. The effect of grid refinement at the blade leading

and trailing edges was not thoroughly investigated

during this effort. Grid refinement, especially at

the leading edge, should allow better resolution of

the flow field near the stagnation points.
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The recommendations relating to the second category

will require much more effort than those in the first. Two

specific areas are suggested for implementation:

1. Viscous effects need to be accounted for. Low

aspect ratio turbines are strongly influenced by

viscous phenomena and this needs to be accounted

for in order to obtain accurate efficiencies.

2. Extend the code to solve the unsteady vane-blade

interaction problem. This is the most extensive

effort suggested for implementation. Vane-blade

interaction is currently receiving much attention

in the design community and a code that gives

acceptable results has yet to be developed.
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A numerical algorithm is developed with the capability
of capturing shocks in the internal blade passages of a
modern gas turbine. The algorithm uses MacCormack's
explicit finite difference scheme to solve the two-
dimensional form of the Euler equations. Inlet and exit
boundary conditions are developed that allow disturbances to
propagate out of the computational domain without
reflection. Periodic boundary conditions are applied such
that an infinite cascade is modeled.

The computed steady state solution is compared with
experimental data for a high-work low aspect ratio turbine.
The ability to obtain a reasonably accurate blade loading
diagram within a practical execution time Is demonstrated.
Two oblique shocks, typical of those formed at the trailing
edge of a transonic rotor blade, are captured. These shocks
are smeared over several grid points, as expected with a
shock capturing scheme, but their influence on the blade
loading diagram is evident.
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